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Fractional diffusion model for force distribution in static granular media
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We present the results of a numerical and an experimental investigation of the probability distribution of
normal contact forces in static packs of particles with two different hardnesses. Force distributions are com-
puted and compared with existing models and experimental data. It is found that the probability distribution
function of normal contact forcesP( f ) is well described by a semiempirical model derived from a fractional
diffusion equation. This model reproduces most of the features common to force distributions observed in
experimental and numerical studies including the finite value forP( f ) as the forces tend to zero. The results
indicate that the fractional model fits well both the numerical and experimental data over a wide range of
particle deformations in contrast to the existing models. These results provide an insight into the physics of
granular media and complement previous findings.
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I. INTRODUCTION

It is now well established that the forces within granu
media are distributed following a highly nonlinear netwo
of stressed chains of particles. The forces above the ave
are concentrated in a network of ‘‘force chains’’ that car
most of the imposed load, while some particles within t
bed are practically isolated from their neighbors and carry
load at all. An example of this network is shown in Fig.
Because the interparticle forces and their distribution de
mine the bulk properties of a granular system, this beha
has very important consequences in transport phenom
such as heat conduction@1,2#, sound propagation@3–5#, and
electric conduction@6#.

A common way to analyze the distribution of forces
granular materials is to determine the probability distribut
function P( f ) of normal forcesf 5F/^F&, between neigh-
boring particles, wherêF& indicates an ensemble averag
The force distributions in granular media exhibit seve
common features. Experimental@7–9# and numerical
@10–13# studies have shown that the probability dens
function ~PDF! decays in an exponential manner for forc
above the average, i.e.,f .1 and has a peak and/or a plate
around the mean forcef '1. Recent molecular dynamic
~MD! simulations with different static coefficients of frictio
between particles indicated that both distribution functions
normal and tangential forces are weakly dependent on
ticle friction with some features of forces well below th
average that depend onm @12#. These main features in th
behavior of P( f ) are the same for both two- and thre
dimensional packings@10#. Functional forms, both empirica
@8# and theoretical@14#, have been proposed to model th
force distribution. In the limit off→`, these models predic
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an exponential force distribution, i.e.,P( f )}e2 f . The behav-
ior in the limit f→0 remains in controversy, however mo
of the experimental data indicate thatP( f ) approaches a fi-
nite value. Several experimental@7,9,15# and numerical
@16,10# studies have also indicated that the form of the str
distribution is a function of material properties, grain geo
etries, roughness, packing order, boundary geometries
aspect ratio of the confining vessel. Some studies have i
cated a slow trend to Gaussian behavior at high loads@16,17#
and even a crossover from exponential to Gaussian@18#;
such a crossover, however, has not been observed ex
mentally. A simplified lattice model by Sextonet al. @19#
indicates probability distribution functions for individua
grains which appear Gaussian at all stages of loading.

In this paper, we report results and analyses on a sim
tion study of force distribution in two-dimensional~2D!
granular packs under compression using a discrete elem
simulation ~here taken to be synonymous with particle d
namics! and the statistical analysis of the force distribution
such systems using a fractional diffusion equation. In p
ticular, we compare numerical and experimental data w
predictions by theq model of Coppersmithet al. @14#, the
empirical model by Muethet al. @8#, and the predicted value
by the fractional diffusion model. This study is similar i
spirit to earlier studies of force distribution in dense tw
dimensional granular systems, but differs primarily in t
fact that tools fromfractional calculusare used to describe
the probability density functionP( f ) of force distribution.

We determineP( f ) for two different sets of packings
composed of either elastomeric~soft! or steel~hard! particles
that had settled onto a planar base under the action of gra
and/or an imposed external load and compared them wi
fractional diffusion equation aimed to describe the anom
lous behavior. We show that the force distribution in the
granular systems can be well described by applying the to
of fractional calculus in the modeling of the force statistic
The results indicate that the evolution of the force distrib
tion with loading is not toward a more Gaussian behavior
instead the behavior becomes more anomalous~non-
©2003 The American Physical Society02-1
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Gaussian! as the load is increased in agreement with rec
experimental observations by Eriksonet al. @7#. Fractional
diffusion equations aimed at describing anomalous trans
have been recently employed to investigate phenomena r
ing from advection of particle tracers in porous media@20#,
fractional Brownian motion@21#, anomalous diffusion with
adsorption@22#, fractional heat conduction@23#, to tracer ad-
vection @24#. Closely related models have also been ext
sively used in the description of economic time series a
market dynamics@25,26#. For a review on the subject th
reader is referred to Ref.@27#, and references therein.

The paper is organized as follows. Section II introduc
the numerical method used in the study. The statistical to
are considered in Sec. III. In Sec. IV, we present numer
results for the stress propagation during a 2D quasist
compression test and compare them with the predictions
half fractional diffusion model. A comparison with the exis
ing models and experimental data is also examined in
section. Finally, in Sec. V we provide conclusions and p
spectives.

FIG. 1. Network of normal forces in a 2D packed bed as
function of imposed load.~a! Elastomeric particlesF50, 0.5, and 3
N, respectively.~b! Steel particles withF50, 490, and 2000 N,
respectively. Thicker intercenter lines correspond to larger for
F50 indicates that only hydrostatic pressure due to gravity
been imposed.
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II. SIMULATION METHOD

Particle dynamics~PD! captures the macroscopic me
chanical behavior of a particulate system via calculation
the trajectories of each of the individual particles within t
mass. The time evolution of these trajectories, which are
tained via explicit solution of Newton’s equations of motio
for every particle, then determines the global flow of t
granular material@28#. In a ~soft-particle! PD simulation, the
forces on the particles—aside from gravity—typically a
determined from contact mechanics considerations@29#. In
their simplest form, these relations include normal~Hertzian
@30#! repulsion and some approximation of tangential fricti
~due to Mindlin @31#!. A thorough description of possible
interaction laws can be found in Refs.@32–34#; therefore
they will not be reviewed here.

The method is based on the most basic mechanism of
constitutive phenomena in a granular assemble, that
particle-to-particle interactions at contact points. To det
mine the translational and rotational motion of the partic
in the assembly the classical Newtonian mechanics is u
The equations that describe the particle motion are

mi

dvi

dt
52mig1(

j 51
Fc ~1!

for linear motion and

I i

dvi

dt
5(

j 51
uFtu ^ r ~2!

for angular motion, whereFc5Fn1Ft , Fc , being the total
contact force, withFn , andFt corresponding to the norma
and the tangential force, respectively. The particle-to-part
interaction is established by allowing the assumed soft p
ticles to overlap at the contact point. This overlap serves a
parameter in contact mechanics models used to determ
the resultant contact forceFc . The key feature of a PD simu
lation is that many simultaneous two-body interactions m
be used to model a many-body system@28# and Eq.~1! may
be used to evaluate their next position. This idea works
cause the time-step is chosen to be sufficiently small s
that any disturbance~in this case a displacement-induce
stress on a particle! does not propagate further than that pa
ticle’s immediate neighbors within one time step. Genera
this criterion is met by choosing a time step which is sma
than r /l, wherer is the particle radius andl represents the
relevant disturbance wave speed~for example, dilational,
distortional, or Rayleigh waves@35#!. In general, the relevan
wave speed is

l}AE

r
, ~3!

which for steel yields a time step of'1026 s and for elas-
tomeric particles'1024 s. This latest time step is too larg
for PD to be stable, therefore this value was multiplied b
constant to yield a time step of the order of 1027 s. Under
these conditions, the method becomes explicit, and, th

s.
s
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FRACTIONAL DIFFUSION MODEL FOR FORCE . . . PHYSICAL REVIEW E 68, 021302 ~2003!
fore, at any time increment the resultant forces on any p
ticle are determined exclusively by its interaction with t
closest neighbors in contact. With the accelerations kno
~both linear and rotational!, the velocities and displacemen
may be obtained by numerical integration using a finite d
ferences scheme.

The simulation consists of a monodisperse system of
fectly smooth noncohesive spheres forming a regular t
dimensional pseudoregular packed bed~one-particle deep!,
compressed by a wall of known weight. All material prope
ties are taken directly from the literature and consist solely
the mechanical properties of the solids~see Table I!. A typi-
cal initial condition for simulation is obtained by perturbin
a hexagonal lattice~by removing random particles from th
lattice! and allowing them to resettle under gravity. Partic
settle onto a planar bottom wall under the action of a w
loaded by a constant force. The frictional and elastic prop
ties of the wall are those characteristic of steel. The comp
sion test was considered complete when the kinetic energ
the compressive wall reaches a threshold value close to
and the system a quasistatic equilibrium.

III. A FRACTIONAL DIFFUSION EQUATION
FOR FORCE DISTRIBUTION

Visualization of two-dimensional granular systems app
ing stress-induced birefringence as well as results com
from numerical studies~similar to those displayed in Fig. 1!
demonstrate that forces within granular media follow p
ferred paths, the so-called stress chains or force chains
work. Stress chains belong to an interesting class of com
branching networks, which are not only of intrinsic scienti
interest but also a pervasive natural phenomenon. S
branching networks have been observed in the Internet@36#,
the vascular system@37–39#, river networks@40–42#, drain-
age networks@43#, traffic flow @44#, and the connectivity of
the brain@45,46#. Common to all these different problems
the presence of a power law scaling, tailed distributions,
memory effects. At present, there is no generally accep
theory for explaining the origin of such a behavior. One
cent form of describing these observations is the use of
chastic approaches based on fractional kinetic equat
@27,47–52#. In particular, for granular media under loadin
the probability distribution functions that can be deriv

TABLE I. Parameters used in the simulations.

Parameter Elastomer Steel

Density kg/m3 1250 7900
Poisson ratio 0.36 0.29
Young’s modulus~GPa! 3.1531026 193
Applied load~N! 0–3 0–2000
Number of particles 1032
Particle diameterdp ~m! 0.01
Length ~m! 30dp

Height ~m! 30dp

Friction coefficientm 0.29
Damping coefficient 1.031024
02130
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from a fractional kinetic equation@53# not only possess al
the main features that have been observed both in exp
mental and computational studies of sphere packings but
describe observations indicating that granular media app
to organize itself in a way that its force distribution lies
between the totally random~Gaussian! and the highly corre-
lated limits ~non-Gaussian! @54#. Both issues provide moti-
vation for using fractional derivatives in an attempt to d
scribe the force distribution within granular media.
addition, the present model draws inspiration not only fro
the observations common to complex branching networks
discussed above, but also is based on ideas previously
plied by Oda@55# and Antony@13# who used Gaussian-like
distributions for the description of the probability distribu
tion function of normal forces. Here, the probability distr
bution functionP( f ) is described by a differential equatio
of the form

]bP

]zb
5D

]aP

] f a
1

z2b

G~12b!
d~ f !. ~4!

Equation~4! is a diffusion type of equation, where tim
has been replaced by thez coordinate and the spatial coord
nate by the normalized forcef. The ‘‘diffusion constant’’D is
assumed to be independent ofz. Persson@56# used a similar
reasoning on his study of adhesion between an elastic b
and a randomly rough hard surface. In Eq.~4! the operator
]b/]zb is the fractional Riemann-Liouville time derivative o
the order ofb and ]a/] f a is the Riesz space fractional de
rivative of ordera. These fractional derivatives are integr
differential operators whose definition is given in Re
@48,57#. The last term in Eq.~4! is the source term and de
pends on the initial conditions. Most of the studies use f
boundary conditions and initial conditions centered on
origin, i.e., P( f ,0)5d( f ), such that the Fourier-Laplac
transforms of the Green functions@i.e., the solution for the
d( f ) initial condition P( f ,0)5d( f )] can be easily obtained
Two particular cases are important to this study, the cas
0,b<1 anda52 that corresponds to the so-called frac
Brownian motion or time-fractional diffusion equation an
a5b which denotes the case of neutral fractional diffusio
Following the results by Mainardiet al. @53,58#, Eq. ~4! be-
comes, for the case of thetime-fractional diffusion equation,
equivalent to the following initial value problem

]bP

]zb
5D

]2P

] f 2
1

z2b

G~12b!
d~ f !, ~5!

where D denotes a positive constant with dimensionsLb.
Solution of Eq. 5 with the initial conditionP( f ,0)5d( f ) is
obtained by Fourier transforming both sides of the equat
with respect tof. After integration and inverse Fourier tran
forming of the Green function, the solution is given by

P~ f ,z!5
1

2ADzn
K~z,n!, ~6!
2-3
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VARGAS et al. PHYSICAL REVIEW E 68, 021302 ~2003!
where n5b/2.0 andK(z,n) is a function of Wright type,
defined by

K~z,n!5
1

p (
n50

`
~2z!n21

~n21!!
G~nn!sin~npn!, ~7!

with

z5
f

ADzn
. ~8!

The classical Gaussian solution is recovered whenn
50.5. The properties of theK(z,a) function are given in
Refs.@53,57#. It can be shown@53# that Eq.~6! can be inter-
preted as a symmetric distribution evolving inz, with a
stretched exponential decay, i.e.,P( f ,1)'a fb exp(2cfd) as
f→`. Note the similarities of this form with theq model by
Coppersmithet al. @14#.

The case ofneutral fractional diffusionwhich includes
the Cauchy diffusion problem, i.e.,b5a51 and the limiting
case of wave propagation forb5a52, can be solved fol-
lowing similar procedures as outlined above@53#. The solu-
tion to this problem is given by

P~ f ,z!5
1

2~Dz!
K~z,a!, ~9!

with

K~z,a!5
1

p

f a21 sinFp2 aG
112 f a cosFp2 aG1 f 2a

, ~10!

z is given in this case by

z5
f

~Dz!
. ~11!

The probability distribution functions obtained in Eqs.~6!
and ~9! above have a generalized scaling form

P~ f ,z!5z2gK~ f /zg!, ~12!

where g5b/a is the anomalous diffusion exponent whic
can be viewed as a measure of the long-range correlatio
the force dispersion and withf /zg being a similarity variable.
Equation~12! resembles similar expressions used to desc
the Lagrangian dynamics of particle displacements un
flow conditions@59,60#. A similar scaling function was use
by Coppersmithet al. @14# in the derivation of the so-calledq
model.

IV. RESULTS AND DISCUSSION

Figures 1~a! and 1~b! show the evolution of the network
of normal contact forces for both elastomeric and steel p
ticles, respectively, at three different levels of loading. It
observed for both systems that a subnetwork of stress ch
carries most of the applied external load in agreement w
previous experimental@15,61# and computational@1,10,11#
02130
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studies. The percentage of deformation in this study cove
range from 6% up to 25% for the elastomeric particles a
from 0.5% to 2.5% for the steel particles. The thickness
the intercenter lines, which indicates the force carried
particles in contact, shows that the contact-to-contact fl
tuations is less pronounced for a system with elastom
particles. Qualitatively, the number of particles which ca
small forces~thinner lines! appear to be lower in the system
with soft particles@Fig. 1~a!# than in the bed with hard par
ticles, Fig. 1~b!.

Force distributions

Log-log plots of probability distributions of contact no
mal forces are shown in Figs. 2 and 3 for steel and ela
meric particles, respectively. For the particles of higher ha
ness~steel!, Fig. 2 shows how the probability distributio
function of contact normal forces evolves during a qua
static compression test. All forces are normalized with
spect to their average (^F&) in each sample. The normalize
probability distributions show that as the external load
increased the system response evolves from an almost
fect Gaussian distribution, for the granular packing that h
been formed under a hydrostatic head@see Fig. 2~a!#, to a
non-Gaussian response at the highest load, Fig. 2~c!. The
numerical data show all the features previously report
namely, a peak around the average, a plateau below the
erage force, and an exponential decay for forces above
average. The results in Fig. 2~a! with no external force are
consistent with the experimental results by Lo”voll et al. @62#
using glass beads.

In Fig. 2 the dashed line corresponds to a PDF with
Gaussian distribution obtained by solving Eqs.~6!–~8! with
a52, b51, andD5z51. The continuous line in Fig. 2~b!
is a fitting with Eqs.~6!–~8! with a52, b51.4, andD5z
51. The solid line in Figure 2~c! represents the solution o
Eqs. ~9!–~11! with a5b51.7, andD5z51. The distribu-
tion function captures the exponential decay for forces ab
the average (f .1), the plateau of the distribution for force
below the average (f ,1), and the peak around the mea
( f '1). The results indicate both qualitatively~by the shape
of the distribution! and quantitatively~by theb anda orders
of the fractional diffusion equation! that the response of th
system evolves from Gaussian to anomalous. Results wi
larger system~15 000 particles!—not shown—indicate tha
increasing the system size has no effect on the results o
than improving the statistics of the data.

In order to compare the behavior of particles with a hi
hardness with that of softer particles, a similar set of num
cal experiments was performed using elastomeric partic
These results are shown in Fig. 3.

For softer particles, the results indicate that as the
posed load~degree of deformation! increases, the shape o
the PDF departs from the Gaussian behavior which has b
reported at large deformations. The soft elastomeric partic
which sustain a larger amount of deformation, show a m
pronounced peak around the average (f '1) and a steepe
decay. The results in Fig. 3 are in good qualitative agreem
with the experimental observations of Eriksonet al. @7# who
2-4
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FRACTIONAL DIFFUSION MODEL FOR FORCE . . . PHYSICAL REVIEW E 68, 021302 ~2003!
used soft rubber particles. Once again, a transition fr
Gaussian to anomalous behavior is clearly observed. T
result is confirmed by the orders of the fractional diffusi
equation used to fit the data, which change from values c
to a Gaussian distribution, i.e.,b'1, anda'2 to values
that indicate a wavelike behavior, i.e.,b5a52.

Similar to the dashed lines shown in Fig. 2, the dash
line in Fig. 3 corresponds to a PDF with a Gaussian dis
bution obtained by solving Eqs.~6!–~8! with a52, b51,
and D5z51. The continuous line in Fig. 3~a! is a fitting
with Eqs. ~6!–~8! with a52, b51.5, andD5z51. The
solid lines in Figs 3~b! and 3~c! represent the solution of Eqs

FIG. 2. Probability distribution functionP( f ) of normalized
normal forces as a function of applied load for steel beads.
panels shown correspond with an applied load of 0, 490, and 2
N, respectively. The lines represent the solution of the fractio
model. The dashed line corresponds toa52,b51 which represents
a normal Gaussian distribution. The continuous line represen
non-Gaussian distribution with~b! a52, b51.4 and ~c! a5b
51.7, respectively. The fitting functions are explained in the te
02130
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d
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~9!–~11! with D5z51, for a5b51.85 anda5b51.95,
respectively.

The observations presented above indicate that, in m
aspects, the quasistatic deformation of hard and soft parti
is qualitatively similar. Starting with a distribution tha
closely resembles a Gaussian profile at low loads, the sys
evolves toward a non-Gaussian distribution that becom
more anomalous as the load is increased. There are, how

e
00
l

a

FIG. 3. Probability distribution functionP( f ) of normalized
normal forces as a function of applied load for soft elastome
beads. The panels shown correspond with an applied load of 0,
and 3 N, respectively. The lines represent the solution of the f
tional model. The dashed line corresponds toa52,b51 which
represents a normal Gaussian distribution. The continuous line
responds to a non-Gaussian distribution with~a! a52, b51.5, ~b!
a5b51.85, and~c! a5b51.95, respectively. The fitting func
tions are explained in the text.
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VARGAS et al. PHYSICAL REVIEW E 68, 021302 ~2003!
some differences. While the particles with the higher ha
ness evolve from a Gaussian behavior to a time-fractio
response and finally at high loads to a neutral-fractional
sponse, the softer material response indicates a beha
which is anomalous from the very beginning and that can
best described with a time-fractional equation at low loa
and at larger loads with a neutral-fractional diffusion equ
tion. In agreement with recent experimental observations@7#,
our results indicate a non-Gaussian decay. The distribut
decay exponentially and even slower at forces above the
erage and for large degrees of deformation.

It is known that the microstructure within granular med
is modified by even the smallest amount of disorder, e
polydispersity in size or shape and the presence of rou
ness, so that, ultimately, the individual particle propert
play a fundamental role in determining the bulk behavior
a granular system. In particular, the probability distributi
function of contact forces is strongly influenced by the co
tact mechanics exhibited by the particles@2#. In this study the
simulations have been carried out using smooth sphe
particles, therefore, some of the the results discussed a
might not represent a universal behavior. This implies t
changes in parameters that can affect the microstructur
the pack will have an effect on theP( f ) profiles. This issue
remains to be explored.

Comparison with existing models

Up to this point it has been shown that predictions of
fractional model when compared with numerical data
particles with two different hardnesses are in good qual
tive agreement. In this section we compare the prediction
the fractional model with well established models. To co
pare experimental and/or numerical calculated data onP( f )
with the predictions of theoretical or empirical models, tw
functional forms have extensively been used, the so-calleq
model by Coppersmithet al. @14# and the empirical mode
proposed by Muethet al. @8#. Adopting a stochastic perspec
tive, a mean-field solution for the probability distribution
normal contact forces was derived by Coppersmithet al.
@14#. Theq model has the form

P~ f !5
kk

~k21!!
f k21 exp~2k f !, ~13!

where f 5F/^F& is the normalized normal contact forc
Mueth et al. @8# proposed a purely empirical model of th
form

P~ f !5a~12be2 f 2
!eb f , ~14!

wherea, b, andb are fitting constants. A slightly genera
ized version of Eq.~14! has been used in Ref.@9#. This
functional form is written as

P~ f !5a~12be2c f2!ed f, ~15!

wherea, b, c, andd are also fitting constants. The two fun
tional forms in Eqs.~14! and ~15! capture all the feature
common to force distributions in granular media, that is,
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exponential tail at largef, the plateau nearf '1, the upturn
in P( f ) as f→0, as well as the finite value ofP( f ) as f
→0. To compare the predictions of the proposed fractio
model with the existing models, we fit Eqs.~13! and~15! to
our numerical data for the system with the highest degree
deformation. These numerical data correspond with thos
Figs. 2~c! and 3~c!. The results of this exercise are shown
Fig. 4.

Figures 4~a! and 4~b! show the contact force distributio
obtained for ‘‘soft’’ and ‘‘hard’’ particles, corresponding to
degree of deformation of 24.9% and 2.4%, respectively. T
lines indicate the three different models used for compari
and full symbols the numerical data. The dotted line rep
sents the predictions based on the theoretical model give
Eq. ~13! with k53. The results indicate that this model fi
very poorly with the numerical data as the degree of def
mation increases significantly, that is, as we go from F
4~b! to 4~a!. For the system with a low degree of deformatio
@Fig. 4~b!#, the q model properly captures the exponent
decay for forces well above the average, but fails to capt

FIG. 4. A comparison of probability distribution function mod
els with numerical data.~a! Elastomeric particles forF53 N. The
dotted line represents a fit with Eq.~13!, k53. The dashed line
corresponds to Eq.~15! using a54.0, b51.35,c52.0, and d
53.5. ~b! Steel particles forF52000 N. Dotted line same as in
panel ~a!. The dashed line corresponds to Eq.~15! using a
52.0, b50.98,c51.1, andd51.8. The solid lines are fittings with
the fractional model Eqs.~9!–~11! with ~a! D5z51, a5b51.95
~b! D5z51, a5b51.7
2-6
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the distribution for forces below the average. In agreem
with previous studies we find for both soft and hard mater
that P( f ) does not approach zero asf→0, in contrast with
the predictions of theq model in Eq.~13!. In the context of
a toy model, Sextonet al. @19# concluded that for bead pack
in which particles suffer a large deformation, the predictio
based on theq model might be inaccurate and, therefore, t
model could only be a good approximation for weak co
pression regimes. The results in Fig. 4 seem to confirm th
conclusions. A recent numerical study by Snoeijeret al. @63#
indicates that the discrepancies between theq model and
experimental and/or numerical data might be due to diff
ences in the contact geometry; this argument however
needs to be tested experimentally.

The dashed lines in Fig. 4~a!, which correspond to the
empirical fit of Eq.~15!, indicate that the agreement betwe
the model and numerical data is poor for most ofP( f ), only
a marginal agreement on the behavior ofP( f ) for large val-
ues of f is achieved with the best fitting parameters. T
empirical fit of Eq.~15!, in Fig. 4~b!, indicates a moderate
agreement with the numerical data. The fit of Eq.~15! in this
case is much better than in the case of the system of Fig.~a!
whose degree of deformation is higher, suggesting that s
lar to the case of theq model, the empirical model of Mueth
et al. @8# seems to perform better for systems with a lo
degree of deformation as that in panel Fig. 4~b!. The fitting
with the fractional model, Eqs.~9!–~11! here represented b
the solid continuous lines, indicate a good agreement w
the numerical data throughout the bulk ofP( f ), but falling
off less quickly than the numerical data for forcesf .1 in the
case of the system with the largest deformation in Fig. 4~a!.

Comparison with experimental data

The predictions of our model as well as the numeri
results can be easily tested using the now standard ca
paper technique developed by the authors of Refs.@7–9,64#.
The granular packs studied are 3D packs of stainless s
beads with diameterd54.7660.02 mm and polymer pellet
~polypropylene homopolymer, Rockwell hardness 96! with a
de f f53.1760.1 mm, respectively. The particles are confin
in a steel cylinder of 150 mm in height and 75 mm inn
diameter. Once the cylinder is filled with particles, a spe
fied load is applied to the upper piston using a hydrau
press, while the lower piston is held fixed. The packs
polymer particles are constructed with one layer of steel p
ticles at the bottom surface. Polymer particles are caref
added on top of the steel layer so as not to disturb the
derlying steel beads. This arrangement facilitates the exp
mentation with the polymer particles whose shapes are fa
nonspherical. Contact forces are measured by lining the
tom piston with a layer of carbon paper with white glos
paper underneath. Steel beads at the bottom of the cont
press the carbon paper and leave marks whose darknes
area depend on the force applied on the bead. Once the
has been applied, the system is disassembled and the pa
of marks on the paper is digitized using a flatbed scanner
further image analysis. The force is determined by interpo
tion on calibration curves obtained by pressing a single p
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ticle with forces in the range of interest. All forces for
given experimental run are normalized using the aver
force for that run and the resulting probability distribution
the result of averaging three independent experimental r
The results for steel and polymeric particles are shown
Fig. 5.

In Figure 5 we compare the PDF obtained from expe
ments with the predictions of the fractional model introduc
in Sec. III and the two models forP( f ) in Eqs.~13! and~15!,
respectively. For both soft and hard particles we find that
shape of the experimentally determinedP( f ) is qualitatively
similar to those we observe in the simulations of the previo
sections at similar levels of loading~see Fig. 4!. These re-
sults are also in agreement with previous experimental fi
ings @7#. When the experimental data is correlated with t
functional forms forP( f ) in Eqs. ~13! and ~15!, it is ob-
served that the behavior is remarkably similar to that in F
4. For the soft particles in Fig. 5~a!, which sustained the
largest degree of deformation both theq model and the gen-
eralized version of Mueth’s empirical model fit poorly th
experimental data. Theq model properly predicts the tren

FIG. 5. Probability distribution functionP( f ) obtained using the
carbon paper technique~a! polymer particles forF5800 N and~b!
steel particles forF5800 N. The dotted lines represents a fit wi
Eq. ~13!, k53. The dashed line corresponds to Eq.~15! using ~a!
a54.0, b51.5, c52.5, and d53.0; ~b! a51.4, b50.95,c51.4
and d52.0. The solid lines are fittings with the fractional mod
Eqs. ~9!–~11! with ~a! D50.4, z51, a5b51.45; ~b! D50.4, z
51, a5b51.9. The degree of deformation is~a! 11.5% and~b!
1.8%, respectively.
2-7



v

nt
l f
n
a
u-
nt
f
a

th
e
th
o
fo

on
ri-
le

na
m
ed
es
he

er

a
a
o
so
er
rib

n
fo

y

La
ti

la
en

th

ve a
and
es
efs.

eri-
sion
rd-

e-
he
nal

or

ian

s a
nd
ort

ian.
tion
se-
r-

his
s of
y.
ery
ing
nd

hot
go-

rt-
-
rdo

n.
ted
d
-
of

VARGAS et al. PHYSICAL REVIEW E 68, 021302 ~2003!
for forces above the average; the values, however, are o
predicted. The dashed line in Fig. 5, which corresponds
the empirical fit of Eq.~15!, indicates that the agreeme
between the model and the experimental data is margina
large values off. Both models fail to capture the distributio
for forces below the average. The fitting with the fraction
model, Eqs.~9!–~11! here represented by the solid contin
ous line, indicates a good agreement with the experime
data but decaying slower than the experimental data,
forces f .1; also some overprediction of the peak value
f '1 is observed. The results in Fig. 5~b!, which correspond
to the hard system, show that the fit with theq model and the
empirical model in Eq.~15! are in moderate agreement wi
the experimental data, a significant deviation for forces w
above the average is observed. Similar to the findings in
preceding section, we note that both models seem to perf
better when applied to a system with a low degree of de
mation. The fit with the fractional model in Eqs.~9!–~11! is
good over the entire range of forces.

The results reported have demonstrated that a fracti
diffusion equation fits reasonably well with the force dist
bution in granular media even for large levels of partic
deformation therefore providing an alternative way to a
lyze force distribution functions. There are however, so
difficulties with this model. In particular, the upturn observ
in P( f ), both in simulations and experiments at small forc
is not well captured by the fractional model. However, t
model predicts in all the cases a finite value ofP( f ) as f
→0 and observation that agrees quite well both with exp
mental and numerical findings@7,8,62#. Barkai @65#, in his
study on the foundations of the fractional diffusion equ
tions, found that the fractional approximation can bre
down at the originf 50, and, in general, the convergence
the solution atf→0 can be extremely slow. There are al
difficulties to predict correctly the behavior of the high-ord
moments and, therefore, the solution might not desc
properly the tails of the function, i.e.,f→`; similar obser-
vations have been put forward by Mainardiet al. @53#. These
arguments might be the reason as to why the model does
capture properly the behavior at very small forces and
large values off; further study into this problem is clearl
required.

Recently, it has been pointed out by Claudinet al. @66#
that an analogy between the results in the context of
grangian dynamics of particle tracers and stress propaga
within granular media can be established. In particu
Lévy-like flights of particle tracers correspond in the pres
context to stress chains carrying heavy loads. Le´vy flights in
Lagrangian dynamics are believed to be responsible for
anomalous behavior of tracer diffusion@24,59#. It is likely
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that stress chains with forces well above the average ha
similar effect on stress propagation. These observations
their analogy with Lagrangian dynamics certainly requir
further exploration. The interested reader can refer to R
@59,60# for further details.

V. CONCLUSIONS AND OUTLOOK

In this paper, results have been presented for both num
cal simulations and experiments of quasistatic compres
of noncohesive systems of particles with two different ha
nesses. It has been shown that for both soft~elastomeric! and
hard ~steel! particles the force distribution can be well d
scribed by a fractional diffusion equation. We find that t
degree of deformation determines the orders of the fractio
diffusion equation. At low deformations, either with hard
soft particles, theP( f ) follows a functionality that is close to
a Gaussian distribution withb'1 anda'2. As the defor-
mation increases, the behavior becomes anomalous andP( f )
is asymmetric with tails that depart from a classical Gauss
distribution and reach a wavelike distribution withb anda
→2. The percentage of deformation in this study cover
range from 6% up to 25% for the elastomeric particles a
from 0.5% to 2.5% for the steel particles. Our results supp
previous experimental observations@7# which indicate that
for forces above the average the decay is non-Gauss
These observations support the notion that a descrip
based on a fractional diffusion equation might provide a u
ful tool to analyze force distributions in granular media; fu
ther work in this topic is clearly needed.

From a practical perspective, the observations in t
study suggest that the addition of soft particles to packing
hard particles will modify the force distribution substantiall
This simple modification in force transmission can have v
important implications for practical uses such as improv
the design of binders for plastic-bonded explosives a
solid-rocket fuels, binders and fillers for asphalts, and
spot reduction in chemical reactors among others. Our on
ing work will explore some of these topics.
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