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Fractional diffusion model for force distribution in static granular media
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We present the results of a numerical and an experimental investigation of the probability distribution of
normal contact forces in static packs of particles with two different hardnesses. Force distributions are com-
puted and compared with existing models and experimental data. It is found that the probability distribution
function of normal contact forceB(f) is well described by a semiempirical model derived from a fractional
diffusion equation. This model reproduces most of the features common to force distributions observed in
experimental and numerical studies including the finite valuePfidr) as the forces tend to zero. The results
indicate that the fractional model fits well both the numerical and experimental data over a wide range of
particle deformations in contrast to the existing models. These results provide an insight into the physics of
granular media and complement previous findings.
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[. INTRODUCTION an exponential force distribution, i.®(f)>e~. The behav-
ior in the limit f—0 remains in controversy, however most
It is now well established that the forces within granularof the experimental data indicate th¢f) approaches a fi-

media are distributed following a highly nonlinear network nite value. Several experiment@?,9,18 and numerical
%6,1(] studies have also indicated that the form of the stress

of stressed chains of particles. The forces above the avera% - ST : ; , \
istribution is a function of material properties, grain geom-

are concentrated in a network of “force chains” that carry etries, roughness, packing order, boundary geometries and
most of the imposed load, while some particles within theaspe(:t ratio of the confining vessel. Some studies have indi-

bed are practically isolated from their neighbors and carry NQ.ot+aq 4 siow trend to Gaussian behavior at high I626L7)
load at all. An example of this network is shown in Fig. 1. 504 even a crossover from exponential to Gaus§lsy;
Because the interparticle forces and their distribution detersuch a crossover, however, has not been observed experi_
mine the bulk properties of a granular system, this behaviomentally. A simplified lattice model by Sextoet al. [19]
has very important consequences in transport phenomeriadicates probability distribution functions for individual
such as heat conducti¢f,2], sound propagatiof8—5], and  grains which appear Gaussian at all stages of loading.
electric conductiorf6]. In this paper, we report results and analyses on a simula-
A common way to analyze the distribution of forces in tion study of force distribution in two-dimension&2D)
granular materials is to determine the probability distributiondranular packs under compression using a discrete element
function P(f) of normal forcesf =F/(F), between neigh- Simulation(here taken to be synonymous with particle dy-
boring particles, wheréF) indicates an ensemble average_namlcs) and the st_atlstlcal an_aly5|s o_f th(_e force dls_tr|but|on in
The force distributions in granular media exhibit severalsfUCh systems using a fract.|0nal dlffu5|on_equat|on. In-par-
common features. Experimental7—9] and numerical E(r:gé?gn%es %3”1ﬂ2;emnoudgfggacl:;&gﬁﬁﬁg?zm[all 4]da}[tr?ewnh
%r?ctﬁl (SFEL[J)dFI)eZeEZ\;g iihnggxtph:r:emgl p%c;l?]a:]kglrn%/md% ?iggempirical model by Muettet al.[8], and the predicted values

. by the fractional diffusion model. This study is similar in
above the average, i.6.>1 and has a peak and/or a platéaugpirit 1o earlier studies of force distribution in dense two-

around the mean forcé~1. Recent molecular dynamics gimensional granular systems, but differs primarily in the
(MD) simulations with different static coefficients of friction ¢t that tools fromfractional calculusare used to describe
between particles indicated that both distribution functions othe probability density functio®(f) of force distribution.
normal and tangential forces are weakly dependent on par- \we determineP(f) for two different sets of packings
ticle friction with some features of forces well below the composed of either elastomefioft) or steel(hard particles
average that depend qu [12]. These main features in the that had settled onto a planar base under the action of gravity
behavior of P(f) are the same for both two- and three- and/or an imposed external load and compared them with a
dimensional packinggl0]. Functional forms, both empirical fractional diffusion equation aimed to describe the anoma-
[8] and theoretica[14], have been proposed to model the |ous behavior. We show that the force distribution in these
force distribution. In the limit off — <, these models predict granular systems can be well described by applying the tools
of fractional calculus in the modeling of the force statistics.
The results indicate that the evolution of the force distribu-
*Corresponding author. tion with loading is not toward a more Gaussian behavior but
Electronic address: wvargas@007mundo.com instead the behavior becomes more anomalgoen-
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] Il. SIMULATION METHOD
s o onodlhons cosaliins Pa}rticle dyngmics(PD) c_aptures the maproscopic ‘me-
R ey chanical behavior of a particulate system via calculation of
e s % the trajectories of each of the individual particles within the
7 o mass. The time evolution of these trajectories, which are ob-
tained via explicit solution of Newton’s equations of motion
for every particle, then determines the global flow of the
granular material28]. In a (soft-particle PD simulation, the
! forces on the particles—aside from gravity—typically are
2 determined from contact mechanics considerati®. In
) _ their simplest form, these relations include norrttdértzian
5 ::{:Z:f;?ﬁ:;ﬁ;t"‘ N R [30]) repulsion and some approximation of tangential friction
SO AIKERK AL . . . . .
R AGBRALNON . (due to Mindlin[31]). A thorough description of possible
a RN LREERCE % i i [
s N, (il interaction laws can be found in Refl82—-34; therefore
o\\’:;o;0}:.3}:0:.:0’#:.\\%2.’. . .
N b W .:.:.:.:,gg,o‘@{:::g they will not be reviewed here.
Y b SRKES The method is based on the most basic mechanism of the
9 IR & constitutive phenomena in a granular assemble, that is,
RS particle-to-particle interactions at contact points. To deter-
PN . . . . .
LS mine the translational and rotational motion of the particles
g in the assembly the classical Newtonian mechanics is used.
d The equations that describe the particle motion are
'0’0‘0'0‘;’0‘0‘0’6".?#
et Sttt & =
R XXX X LA % dv,
KGN i i 2
SR mid___mig+_ Fc (1)
~'A'¢;o'o 000, t =1
SOK
> TR N for linear motion and
X ARNA 00
N\
O KRR dw;
DA NN o

gt =2, [Rder @

FI_G. 1. _Network of normal force_s in a_2D packed bed as afy, angular motion, wher&.=F,+F,, F., being the total
function of.lmposed loada) Elgstomerlc particles =0, 0.5, and 3 contact force, withF,,, andF, corresponding to the normal
N, respectively.(b) Steel particles withF=0, 490, and 2000 N, 5.4 the tangential force, respectively. The particle-to-particle
respe(_:tlvgly. Thicker intercenter Iln_es correspond to Iarger_force%meracti(Jn is established by allowing the assumed soft par-
F=0 indicates that only hydrostatic pressure due to gravity ha%icles to overlap at the contact point. This overlap serves as a
been imposed. : : ) .
parameter in contact mechanics models used to determine
the resultant contact forde.. The key feature of a PD simu-
lation is that many simultaneous two-body interactions may
Gaussiajp as the load is increased in agreement with recenpe used to model a many-body systE28] and Eq.(1) may
experimental observations by Erikset al. [7]. Fractional be used to evaluate their next position. This idea works be-
diffusion equations aimed at describing anomalous transpotiause the time-step is chosen to be sufficiently small such
have been recently employed to investigate phenomena rantitat any disturbancéin this case a displacement-induced
ing from advection of particle tracers in porous mefdf], stress on a particledoes not propagate further than that par-
fractional Brownian motiorf21], anomalous diffusion with ticle’s immediate neighbors within one time step. Generally,
adsorptior[22], fractional heat conductiof23], to tracer ad-  this criterion is met by choosing a time step which is smaller
vection[24]. Closely related models have also been extenthanr/\, wherer is the particle radius andl represents the
sively used in the description of economic time series andelevant disturbance wave speér example, dilational,
market dynamicg25,26. For a review on the subject the distortional, or Rayleigh wavd85]). In general, the relevant

reader is referred to Ref27], and references therein. wave speed is

The paper is organized as follows. Section Il introduces
the numerical method used in the study. The statistical tools Noc \/E 3)
are considered in Sec. lll. In Sec. IV, we present numerical p’

results for the stress propagation during a 2D quasistatic

compression test and compare them with the predictions of which for steel yields a time step 610 ° s and for elas-
half fractional diffusion model. A comparison with the exist- tomeric particles~10™# s. This latest time step is too large
ing models and experimental data is also examined in thifor PD to be stable, therefore this value was multiplied by a
section. Finally, in Sec. V we provide conclusions and perconstant to yield a time step of the order of 10s. Under
spectives. these conditions, the method becomes explicit, and, there-
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TABLE |. Parameters used in the simulations. from a fractional kinetic equatiof63] not only possess all
the main features that have been observed both in experi-
Parameter Elastomer Steel mental and computational studies of sphere packings but also
Density kg/ 1250 7900 describe_ observations indicating that gran'ula_r m_edia' appear
Poisson ratio 0.36 0.29 to organize itself in a way that its force distri_bution lies in
Young's modulusGP3 3.15¢ 10-6 103 betwe_en_the totally ran(_jOI(rGaussmh aind the high_ly corre-

. ' lated limits (non-Gaussian[54]. Both issues provide moti-
Applied load(N) 0-3 0-2000  \ation for using fractional derivatives in an attempt to de-
Number of particles 1032 scribe the force distribution within granular media. In
Particle diameted,, (m) 0.01 addition, the present model draws inspiration not only from
Length (m) 30d,, the observations common to complex branching networks, as
Height (m) 30d, discussed above, but also is based on ideas previously ap-
Friction coefficientu 0.29 plied by Oda[55] and Antony[13] who used Gaussian-like
Damping coefficient 1810°* distributions for the description of the probability distribu-

tion function of normal forces. Here, the probability distri-

. . bution functionP(f) is described by a differential equation
fore, at any time increment the resultant forces on any par.

) . . L X . of the form
ticle are determined exclusively by its interaction with the
closest neighbors in contact. With the accelerations known
(both linear and rotationglthe velocities and displacements 9PP _D J*P z7F
may be obtained by numerical integration using a finite dif- P W+ L(1-p)
ferences scheme.

The simulation consists of a monodisperse system of per- : : e : .
fectly smooth noncohesive spheres forming a regular twoh Eguation(zil) IS gt;jifftllizsmn 'Ejy_petof e((qjutahtion, V\t'.hTre t"ge_
dimensional pseudoregular packed Hede-particle deep as been replaced by tzeoordinate and he spatial coord

compressed by a wall of known weight. All material proper- nate by the normalized fordeThe “diffusion constantD is

ties are taken directly from the literature and consist solely Ofssun:](ia: to ri)t;ilnd;epdendfentder]ﬂDeirsns%r[tSVE\i] uiedna Iswntiilarb d
the mechanical properties of the soligge Table)l A typi- easoning on his study ot adhesion between an elastic body

cal initial condition for simulation is obtained by perturbing and a randomly rough hard surface. In E4 the operator

- ’ . ﬁ ﬁ . . . _ - . . . .
a hexagonal latticéby removing random particles from the '?h/ 72 dls th? fracgzilz/ai?ﬂe_m?hnn llQ‘.'OUV'"e timefderti_vati\1e dOf
lattice) and allowing them to resettle under gravity. Particles . e order off an IS the Riesz space Iractional de-

settle onto a planar bottom wall under the action of a Wa"rivative of ordera. These fractional derivatives are integro-

loaded by a constant force. The frictional and elastic propergilfferentlal operators whose definition is given in Refs.

ties of the wall are those characteristic of steel. The comprei—48’g7-|' Thti Ia_st_t'_[elr m n dE.q(A') Ii/lthet S?E[Jrqce ie:jm and d?'
sion test was considered complete when the kinetic energy nds on the niial conditions. VIost o the studies use iree

the compressive wall reaches a threshold value close to ze 'u.nda.ry conditions and initial conditions ceniered on the
and the system a quasistatic equilibrium. origin, i.e., P(f,0)=(f), such t_hat the Fouiier-LapIace
transforms of the Green functiofise., the solution for the

S(f) initial condition P(f,0)= &§(f)] can be easily obtained.
Two particular cases are important to this study, the case of
0<B=<1 anda=2 that corresponds to the so-called fractal
Visualization of two-dimensional granular systems apply-Brownian motion or time-fractional diffusion equation and
ing stress-induced birefringence as well as results coming =8 which denotes the case of neutral fractional diffusion.
from numerical studiegsimilar to those displayed in Fig)1 Following the results by Mainardét al.[53,58,, Eq. (4) be-
demonstrate that forces within granular media follow pre-comes, for the case of thime-fractional diffusion equation
ferred paths, the so-called stress chains or force chains negquivalent to the following initial value problem
work. Stress chains belong to an interesting class of complex

o(f). 4

Ill. A FRACTIONAL DIFFUSION EQUATION
FOR FORCE DISTRIBUTION

branching networks, which are not only of intrinsic scientific 98P 2P 7B
interest but also a pervasive natural phenomenon. Such = D—2+T5(f), (5)
branching networks have been observed in the IntdBtif 0z ai (1-8)

the vascular systeil87—39, river networkg40-42, drain-
age network$43], traffic flow [44], and the connectivity of where D denotes a positive constant with dimensidrfs

the brain[45,46l. Common to all these different problems is Solution of Eq. 5 with the initial conditiodP(f,0)= &(f) is

the presence of a power law scaling, tailed distributions, andbtained by Fourier transforming both sides of the equation
memory effects. At present, there is no generally acceptedith respect td. After integration and inverse Fourier trans-
theory for explaining the origin of such a behavior. One re-forming of the Green function, the solution is given by

cent form of describing these observations is the use of sto-

chastic approaches based on fractional kinetic equations

[27,47-52. In particular, for granular media under loading, P(f,z)=
the probability distribution functions that can be derived 2\Dz"

K(Z,v), (6)
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where v= /2.0 andK({,v) is a function of Wright type,
defined by

1 * _ ~\n-1
K(g’,v)z;rgo((rf—)l)!l“(nv)sin(nwv), 7
with
f
{= T €S)

The classical Gaussian solution is recovered when
=0.5. The properties of th&({,«) function are given in
Refs.[53,57. It can be show53] that Eq.(6) can be inter-
preted as a symmetric distribution evolving m with a
stretched exponential decay, i.@(f,1)~af’exp(—cf? as
f—o. Note the similarities of this form with thg model by
Coppersmithet al. [14].

The case ofneutral fractional diffusionwhich includes
the Cauchy diffusion problem, i.e8=«a=1 and the limiting
case of wave propagation f@=«=2, can be solved fol-
lowing similar procedures as outlined abd#s]. The solu-
tion to this problem is given by

1
P(f.2)= 35 K&, (9
with
a—1 ; z
1 f sw{ 5
K(Z.a)=— {W )
1+2f%cog - a|+f2®
2
£ is given in this case by
f
{ (12)

~(D2)
The probability distribution functions obtained in E¢8)
and (9) above have a generalized scaling form

P(f,z)=z""K(f/z"), (12

PHYSICAL REVIEW E 68, 021302 (2003

studies. The percentage of deformation in this study covers a
range from 6% up to 25% for the elastomeric particles and
from 0.5% to 2.5% for the steel particles. The thickness of
the intercenter lines, which indicates the force carried by
particles in contact, shows that the contact-to-contact fluc-
tuations is less pronounced for a system with elastomeric
particles. Qualitatively, the number of particles which carry
small forces(thinner lineg appear to be lower in the system
with soft particlegFig. 1(a)] than in the bed with hard par-
ticles, Fig. 1b).

Force distributions

Log-log plots of probability distributions of contact nor-
mal forces are shown in Figs. 2 and 3 for steel and elasto-
meric particles, respectively. For the particles of higher hard-
ness(stee), Fig. 2 shows how the probability distribution
function of contact normal forces evolves during a quasi-
static compression test. All forces are normalized with re-
spect to their averag€F)) in each sample. The normalized
probability distributions show that as the external load is
increased the system response evolves from an almost per-
fect Gaussian distribution, for the granular packing that has
been formed under a hydrostatic hdage Fig. 2a)], to a
non-Gaussian response at the highest load, Fig. Zhe
numerical data show all the features previously reported,
namely, a peak around the average, a plateau below the av-
erage force, and an exponential decay for forces above the
average. The results in Fig(@ with no external force are
consistent with the experimental results bjvhb et al.[62]
using glass beads.

In Fig. 2 the dashed line corresponds to a PDF with a
Gaussian distribution obtained by solving E¢®—(8) with
a=2, =1, andD=z=1. The continuous line in Fig. ()
is a fitting with Eqgs.(6)—(8) with «a=2, 8=1.4, andD=z
=1. The solid line in Figure 2c) represents the solution of
Egs.(9)—(11) with a=B=1.7, andD=z=1. The distribu-
tion function captures the exponential decay for forces above
the averagef(>1), the plateau of the distribution for forces
below the averagef& 1), and the peak around the mean
(f~1). The results indicate both qualitativellyy the shape
of the distribution and quantitativelyby the 8 and« orders

where y= g/« is the anomalous diffusion exponent which Of the fractional diffusion equatiorthat the response of the
can be viewed as a measure of the |0ng_range correlation wstem evolves from Gaussian to anomalous. Results with a

the force dispersion and withiz” being a similarity variable.

larger system(15000 particles—not shown—indicate that

Equation(12) resembles similar expressions used to describécreasing the system size has no effect on the results other
the Lagrangian dynamics of particle displacements undefhan improving the statistics of the data.

flow conditions[59,60. A similar scaling function was used

by Coppersmittet al.[14] in the derivation of the so-callegl
model.

IV. RESULTS AND DISCUSSION

In order to compare the behavior of particles with a high
hardness with that of softer particles, a similar set of numeri-
cal experiments was performed using elastomeric particles.
These results are shown in Fig. 3.

For softer particles, the results indicate that as the im-
posed loaddegree of deformatignincreases, the shape of

Figures 1a) and 1b) show the evolution of the networks the PDF departs from the Gaussian behavior which has been

of normal contact forces for both elastomeric and steel parreported at large deformations. The soft elastomeric particles,
ticles, respectively, at three different levels of loading. It iswhich sustain a larger amount of deformation, show a more
observed for both systems that a subnetwork of stress chaiqpsonounced peak around the averade-1) and a steeper
carries most of the applied external load in agreement witldecay. The results in Fig. 3 are in good qualitative agreement
previous experimentdl15,61] and computational1,10,11]  with the experimental observations of Eriksenal.[7] who
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FIG. 2. Probability distribution functiorP(f) of normalized 10%
normal forces as a function of applied load for steel beads. The 107
panels shown correspond with an applied load of 0, 490, and 2000 f=F/<F>

N, respectively. The lines represent the solution of the fractional g 3. Probability distribution functiorP(f) of normalized
model. The dashed line correspondsite 2,8=1 which represents  norma) forces as a function of applied load for soft elastomeric

a normal Gaussian distribution. The continuous line represents geags. The panels shown correspond with an applied load of 0, 0.5,

non-Gaussian distribution witlh) «=2, 8=1.4 and(c) @=f  4nq 3 N, respectively. The lines represent the solution of the frac-

=1.7, respectively. The fitting functions are explained in the text. tional model. The dashed line correspondsate 2,6=1 which
represents a normal Gaussian distribution. The continuous line cor-

used soft rubber particles. Once again, a transition fronfesponds to a non-Gaussian distribution waha=2, =1.5, (b)

Gaussian to anomalous behavior is clearly observed. Thig=8=1.85, and(c) a=p=1.95, respectively. The fitting func-

result is confirmed by the orders of the fractional diffusiontions are explained in the text.

equation used to fit the data, which change from values close

to a Gaussian distribution, i.e~1, anda~2 to values (9)—(11) with D=z=1, for «=8=1.85 anda= 5=1.95,

that indicate a wavelike behavior, i.8=a=2. respectively.

Similar to the dashed lines shown in Fig. 2, the dashed The observations presented above indicate that, in many
line in Fig. 3 corresponds to a PDF with a Gaussian distri-aspects, the quasistatic deformation of hard and soft particles
bution obtained by solving Eq$6)—(8) with a=2, B=1, is qualitatively similar. Starting with a distribution that
andD=z=1. The continuous line in Fig.(d is a fitting  closely resembles a Gaussian profile at low loads, the system
with Egs. (6)—(8) with =2, 8=1.5, andD=z=1. The evolves toward a non-Gaussian distribution that becomes
solid lines in Figs &) and 3c) represent the solution of Eqs. more anomalous as the load is increased. There are, however,
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some differences. While the particles with the higher hard-
ness evolve from a Gaussian behavior to a time-fractional
response and finally at high loads to a neutral-fractional re-
sponse, the softer material response indicates a behavior
which is anomalous from the very beginning and that can be
best described with a time-fractional equation at low loads
and at larger loads with a neutral-fractional diffusion equa- -
tion. In agreement with recent experimental observati@hs
our results indicate a non-Gaussian decay. The distributions
decay exponentially and even slower at forces above the av-
erage and for large degrees of deformation. \
It is known that the microstructure within granular media | = Coppersmith et al. \
is modified by even the smallest amount of disorder, e.g., L | T Thiswork ‘\
polydispersity in size or shape and the presence of rough- 107, - ’
ness, so that, ultimately, the individual particle properties
play a fundamental role in determining the bulk behavior of
a granular system. In particular, the probability distribution
function of contact forces is strongly influenced by the con-
tact mechanics exhibited by the particl@$ In this study the
simulations have been carried out using smooth spherical
particles, therefore, some of the the results discussed above
might not represent a universal behavior. This implies that
changes in parameters that can affect the microstructure of
the pack will have an effect on the(f) profiles. This issue

4 Num, data
—— Mueth et al.

F

=

~—

¢ Num. data iv
. 3L H
remains to be explored. 10 —— Mueth et al. 1\
------ Coppersmith et al. 1
= This work

Comparison with existing models

10 - A

Up to this point it has been shown that predictions of the 107 1 10’

fractional model when compared with numerical data for . ERi<k> .

particles with two different hardnesses are in good qualita- FIG. 4. A comparison of probability distribution function mod-

tive agreement. In this section we compare the predictions di!S With numerical dataa) Elastomeric particles foF =3 N. The

the fractional model with well established models. To com-dotted "”ed refresEerEtlsaa fit with Eglg)b k=133.5The2d§sheddI:jne
: : corresponas 10 Eq using a=4.0,b=1.09,C=<2.U0, an

pare experimental and/or numerical calculated dat# (i) - ) . .

with the predictions of theoretical or empirical models, two _as;llgl' ((2)) S;ﬁgl z:rst:;fis I]it(r?e“: _Cgfrgg %hiOtigd E“gg)sigﬁ az n

functional forms have extensively been used, the so-called 22 0 b=.0 98.c—11 andd—18 Thg solid lines are fittingg with

model by Coppersmitfet al. [14] and the empirical model " o el Eq€9)—(11) with () D=7=1, a= B=1.95

proposed by Muetlet al.[8]. Adopting a stochastic perspec- o —a_

. . . . S (b) D=2z=1, a=pB=17

tive, a mean-field solution for the probability distribution of

normal contact forces was derived by Coppersngthal. ) .
[14]. The g model has the form exponential tail at largé, the plateau neair~1, the upturn

in P(f) asf—0, as well as the finite value d?(f) asf
k 1 —0. To compare the predictions of the proposed fractional
(k—1)! " exp(—kf), (13 model with the existing models, we fit Eq4.3) and (15) to
our numerical data for the system with the highest degree of
where f=F/(F) is the normalized normal contact force. deformation. These numerical data correspond with those in
Mueth et al. [8] proposed a purely empirical model of the E@@JS-4 4c) and 3c). The results of this exercise are shown in
form 1g. 4.
Figures 4a) and 4b) show the contact force distribution
P(f)=a(1— be—fz)eﬁf’ (14) obtained for “soft” and “hard” particles, corresponding to a
degree of deformation of 24.9% and 2.4%, respectively. The
wherea, b, and g are fitting constants. A slightly general- lines indicate the three different models used for comparison
ized version of Eq.14) has been used in Ref9]. This  and full symbols the numerical data. The dotted line repre-

k

P(f)=

functional form is written as sents the predictions based on the theoretical model given by
, Eqg. (13) with k=3. The results indicate that this model fits
P(f)=a(1—be °M)edf, (15)  very poorly with the numerical data as the degree of defor-

mation increases significantly, that is, as we go from Fig.
wherea, b, ¢, andd are also fitting constants. The two func- 4(b) to 4(a). For the system with a low degree of deformation
tional forms in Egs.(14) and (15) capture all the features [Fig. 4(b)], the g model properly captures the exponential
common to force distributions in granular media, that is, thedecay for forces well above the average, but fails to capture
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the distribution for forces below the average. In agreement 1 A
with previous studies we find for both soft and hard materials
that P(f) does not approach zero &s-0, in contrast with
the predictions of thg model in Eq.(13). In the context of 107
a toy model, Sextoet al.[19] concluded that for bead packs g
in which particles suffer a large deformation, the predictions

based on thg model might be inaccurate and, therefore, this § 102 |
model could only be a good approximation for weak com-
pression regimes. The results in Fig. 4 seem to confirm these

A Expt. data

conclusions. A recent numerical study by Snoedjeal.[63] 10% b __ uethetal

indicates that the discrepancies between ghsmodel and | Coppersmith et al.

experimental and/or numerical data might be due to differ- — This work

ences in the contact geometry; this argument however still 10* 3 L - ]

needs to be tested experimentally. 10 ! 10
The dashed lines in Fig.(d), which correspond to the 1

empirical fit of Eq.(15), indicate that the agreement between
the model and numerical data is poor for mosegf), only

a marginal agreement on the behaviomR{ff) for large val- 10" |
ues off is achieved with the best fitting parameters. The ]
empirical fit of Eq.(15), in Fig. 4b), indicates a moderate

agreement with the numerical data. The fit of Etp) in this § 102 }
case is much better than in the case of the system of Fay. 4
whose degree of deformation is higher, suggesting that simi-

Expt. dat o \o
lar to the case of thg model, the empirical model of Mueth 103} ° ,;Sethztaal'
et al. [8] seems to perform better for systems with a low |} .. Coppersmith et al.
degree of deformation as that in panel Figo)4 The fitting — This work
with the fractional model, Eq$9)—(11) here represented by 10 S 1 ]
; . : I : 10 1 10
the solid continuous lines, indicate a good agreement with L F/<F>

the numerical data throughout the bulk B{f), but falling
off less quickly than the numerical data for fordes1 in the
case of the system with the largest deformation in F{g).4

FIG. 5. Probability distribution functiof(f) obtained using the
carbon paper techniqu@) polymer particles fo-=800 N and(b)
steel particles foF =800 N. The dotted lines represents a fit with
Eq. (13), k=3. The dashed line corresponds to Etp) using(a)
a=4.0,b=15,c=25, andd=3.0; (b) a=1.4,b=0.95,c=1.4
andd=2.0. The solid lines are fittings with the fractional model

The predictions of our model as well as the numericalEgs. (9)—(11) with (8) D=0.4,z=1, a=B=1.45; (b) D=0.4,z
results can be easily tested using the now standard carbenl, a=8=1.9. The degree of deformation (8) 11.5% and(b)
paper technique developed by the authors of R&fs9,64. 1.8%, respectively.

The granular packs studied are 3D packs of stainless steel

beads with diameted=4.76=0.02 mm and polymer pellets ticle with forces in the range of interest. All forces for a
(polypropylene homopolymer, Rockwell hardness @@h a  given experimental run are normalized using the average
de1=3.17+0.1 mm, respectively. The particles are confinedforce for that run and the resulting probability distribution is
in a steel cylinder of 150 mm in height and 75 mm innerthe result of averaging three independent experimental runs.
diameter. Once the cylinder is filled with particles, a speci-The results for steel and polymeric particles are shown in
fied load is applied to the upper piston using a hydraulicFig. 5.

press, while the lower piston is held fixed. The packs of In Figure 5 we compare the PDF obtained from experi-
polymer particles are constructed with one layer of steel parments with the predictions of the fractional model introduced
ticles at the bottom surface. Polymer patrticles are carefullyn Sec. Il and the two models fd?(f) in Eqs.(13) and(15),
added on top of the steel layer so as not to disturb the urrespectively. For both soft and hard particles we find that the
derlying steel beads. This arrangement facilitates the expershape of the experimentally determin@gf) is qualitatively
mentation with the polymer particles whose shapes are fairlgimilar to those we observe in the simulations of the previous
nonspherical. Contact forces are measured by lining the bosections at similar levels of loadingee Fig. 4. These re-
tom piston with a layer of carbon paper with white glossysults are also in agreement with previous experimental find-
paper underneath. Steel beads at the bottom of the containieigs [7]. When the experimental data is correlated with the
press the carbon paper and leave marks whose darkness dndctional forms forP(f) in Egs. (13) and (15), it is ob-
area depend on the force applied on the bead. Once the loadrved that the behavior is remarkably similar to that in Fig.
has been applied, the system is disassembled and the patteérnFor the soft particles in Fig.(8), which sustained the

of marks on the paper is digitized using a flatbed scanner folargest degree of deformation both thenodel and the gen-
further image analysis. The force is determined by interpolaeralized version of Mueth’s empirical model fit poorly the
tion on calibration curves obtained by pressing a single parexperimental data. Thg model properly predicts the trend

Comparison with experimental data
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for forces above the average; the values, however, are ovethat stress chains with forces well above the average have a
predicted. The dashed line in Fig. 5, which corresponds tsimilar effect on stress propagation. These observations and
the empirical fit of Eq.(15), indicates that the agreement their analogy with Lagrangian dynamics certainly requires
between the model and the experimental data is marginal fdurther exploration. The interested reader can refer to Refs.
large values of. Both models fail to capture the distribution [59,6Q for further details.

for forces below the average. The fitting with the fractional

model, Eqs.(9)—(11) here represented by the solid continu- V. CONCLUSIONS AND OUTLOOK

ous line, indicates a good agreement with the experimental

data but decaying slower than the experimental data, for In.this paper, results ha\_/e been presenFed fpr both numgri—
forcesf>1; also some overprediction of the peak value atca‘I S|mulat|olns and experlment.s of qqa3|stat|q compression
' of noncohesive systems of particles with two different hard-

f~1 is observed. The results in Figik, which correspond :

to the hard system, show that the fit with thenodel and the nesses. It has b_een shown that f_or bOth. telfistomerirand

empirical model in Eq(15) are in moderate agreement with hard (stee) particles the force distribution can be well de-
ﬁcribed by a fractional diffusion equation. We find that the

the experimental data, a significant deviation for forces wel . . .
above the average is observed. Similar to the findings in th egree of deformation determines the orders of the fractional
' iffusion equation. At low deformations, either with hard or

preceding section, we note that both models seem to perfor . ) ) )
better when applied to a system with a low degree of Olefor_soft particles, thé>(f) follows a functionality that is close to
a Gaussian distribution witfp~1 anda=~2. As the defor-

mation. The fit with the fractional model in Eq€)—(11) is
¥)-(1Y) mation increases, the behavior becomes anomalou® @éind

good over the entire range of forces. . T . : .
asymmetric with tails that depart from a classical Gaussian

The results reported have demonstrated that a fraction%ﬁ S h like distribut )
diffusion equation fits reasonably well with the force distri- distribution and reach a wavelike distribution withand a
—2. The percentage of deformation in this study covers a

bution in granular media even for large levels of particle , :
deformation therefore providing an alternative way to ana'@"9¢ from 6% up to 25% for the elastomeric particles and

lyze force distribution functions. There are however, somdom 0.5% to 2.5% for the steel particles. Our results support
difficulties with this model. In particular, the upturn observed Previous experimental observatiofig] which indicate that

in P(f), both in simulations and experiments at small forces 0" forces above the average the decay is non-Gaussian.
is not well captured by the fractional model. However, the‘l’hese observations support the notion that a description

model predicts in all the cases a finite valueR{f) as f based on a fractional diffusion equation might provide a use-

—.0 and observation that agrees quite well both with experi-fUI tool to analyze force distributions in granular media; fur-

mental and numerical finding¥,8,63. Barkai [65], in his  t"er work in this topic is clearly needed.

study on the foundations of the fractional diffusion equa- I;rom a praﬁncarl] pe(;zpf_ectlv?, t?te ob_slervat|0ns kl'n th'sf
tions, found that the fractional approximation can break®tUdy suggestthat the addition of soft particles to packings o

down at the origirf =0, and, in general, the convergence of ard particles will modify the force distribution substantially.

the solution atf—0 can be extremely slow. There are aIsoTh'S simple modification in force transmission can have very

difficulties to predict correctly the behavior of the high-order'mportar.‘t implications for practical uses such as improving

moments and, therefore, the solution might not describde design of binders for plastic-bonded explosives and
properly the tails of the function. i.ef—o- similar obser- Solid-rocket fuels, binders and fillers for asphalts, and hot
vations have been put forward b)’/ Ma’inaerilial. [53]. These _spot reduct_ion in chemical reactors among others. Our ongo-
arguments might be the reason as to why the model does nBi9 work will explore some of these topics.
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